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Reprise
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“Factoring” an event method

3

E+ E-

E*

(args) ( ) { }≡≡;

E+(args) ; ( ) ≡≡ E(args)

E+(args)

E-( )E(args)

E*( )

Original!
Method 

Forward!
Method

Reverse!
Method

Commit!
Method

The fundamental idea is to take all of the event methods E(args) in a parallel discrete event simulation and “factor” each of them into three parts: E+(args), E-(), and E*().!!
E+(args) is executed in place of E(args) in the simulation and is instrumented to save all information destroyed by the forward execution of E(args) so as to preserve the option after 
E(args) completes of restoring the initial state of an object before it executed.!!
E
-
() uses the information stored by E+() and also the object’s state information to exactly reconstruct the state before E+() executed.  It in effect reverses all of the side effect of     E+

() and exactly accomplishes rollback of the event.!!
E*() is executed at the time event E(args) is committed, and deals with actions specified in E+(args) that really cannot be rolled back, such as output, or the freeing of dynamically 
allocated storage.!!
The two equations boxed in red are properties that the three methods must satisfy.!!
The first one says the E

-
() really does reverse all of the side effects of E+(args), and does nothing else, so that executing E+(args) followed by E

-
() is a no-op.!!

The second one says that executing E+(args) followed by E*() is equivalent to executing the original method E(args).!!
Since every time E+(args) is executed it will either be rolled back or committed, then either E

-
() or E*() will be executed after it and the net effect will either be a no-op (in the case 

of a rollback) or it will be as if E(args) executed (in the case of commitment).!!
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Two auxiliary collections enable 
reverse computation

4

push() pop()

push() pop()

LIFO stack used to 
hold data needed for 
rollback

S:
FIFO queue (with virtual 
timestamps) used to hold 
data needed for commitment

Q:

In factoring an event method we generally use two auxiliary data structures.  One, which we call S in these slides, is a LIFO stack that is used to hold data needed 

for rollback.  The LIFO structure is natural, because the data that we need for executing E-() is need in the reverse order of the order in which it was put in during 
forward execution of E+().!!
The other we are calling Q, and it is a FIFO queue of data to be saved for E*() at commitment time.  Since the things done at commitment time (e.g. output) have to 
be done in the same order as specified during execution of E+(), it is natural for a FIFO queue to be employed.!!
The “push”, “pop” and later “top” and “front” terminology are from the C++ STL.
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Need for automated generation of forward, 
reverse and commit methods

• Requiring programmers to write E+(args), E-(), and 
E*() in addition to E(args) is a prohibitive software 
engineering burden.!
• It essentially triples the work!
• It is extremely taxing mentally!
• It is extremely difficult to debug and maintain.!
• Turns ordinary bugs into Heisenbugs!

• For reverse computation to be feasible it is essential that 
the programmer have to write no more code than 
E(args)!

• As a practical matter E+(args), E-(), and E*() must be 
automatically generated !

5

LLNL has a project called Backstroke that is intended to automatically generate reverse code for almost any code written in C++.
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Backstroke as a ROSE application

6

ROSE is source-to-source compiler infrastructure developed at LLNL 
!
Backstroke works inside ROSE and transforms the code (in AST form),  
factoring event methods into forward, reverse, and commit methods.

This is a diagram of the workflow in ROSE, a general source-to-source program transformation system and compiler. Backstroke is the component in red that uses 
ROSE’s powerful program analysis tools and adds forward, reverse and commit routines for all event methods in a ROSS-compatible simulation. !!
It is not absolutely essential to construct a reverse code generator this way.  You could go directly from the revised Abstract Syntax Tree to executable binary.  (The 
LORAIN project at RPI, based on LLVM, is structured that way.) But by going back through source code, the programmer can see what the forward, reverse, and 
commit methods look like, and perhaps learn how to improve their performance.
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Backstroke applies to most of C++
• We intend to support almost the entire C++ language, 

including!
• assignment, initialization!
• sequential control constructs ;, if, switch, for, while, return, continue, 
break, goto!
• scalars, structs, arrays, classes and class types!
• methods, functions, inheritance, virtual functions, recursion!
• casts!
• constructors, copy constructors, destructors!
• many STL container classes!
• dynamic storage allocation, deallocation!
• templates!

• With restricted support of 
• arbitrary pointer structures!

• But excluding 
• exceptions, throws!
• function pointers!
• threads

7

Some parts of the C++ language are straightforward to support.  Some are quite tricky.  Some may benefit greatly from programmer advice. and some are so 
difficult to support that it will never be worth the effort to try.  If generating reverse code for legacy code we may need hand work to rewrite those parts that use 
features of the language that are not conducive to reversibility.  For new code we need to advise programmers to avoid certain language constructs that will 
preclude automatic generation of reverse code.
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Generating reverse code

8
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Some basic program fragments and reversing templates

9

S is the global stack onto which all saved data is pushed that is required for rolling back forward execution.!!
For the tests in both the conditional and the while loop, we assume there are no side effects.  If there are, then the reverse code can to be easily adjusted.!!
Note that integer increments / decrements and sequential composition require no data to be stored on the stack S.
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Up front 
state saving

10

int a,b;!
!
void E() {!
  if (a>b) {!
    int t = a;!
    b++;!
    a = b;!
    b = t;!
  }!
}

!
void E
  S.push(a);!
  S.push(b);!
  if (a>b) {!
    int t = a;!
    b++;!
    a = b;!
    b = t;!
  }!
}

!
void E
  b = S.top();!
  S.pop();!
  a = S.top();!
  S.pop();!
}

!
void E
  S.pop();!
  S.pop();!
}

E()

E+()

E-()

E*()

With up front state saving we identify all of the state variables that might change and push their values on the stack at the beginning of the forward routine. We do 
not have to record which branch of the conditional was taken, and if there were a loop in the method body we would not need to record how many times the body 
was executed. In this case both state variables do change. But if there were more variables in the state and we could not determine statically that some of them 

would not change during execution of E() we would just introduce code in E+() and E-() to save and restore them all. In E-() we simply restore the values of a 
and b and pop the stack..  We do not have to pay any attention to the algorithm used in E(). !!
The commit method E*() must also pop any values off the stack that were pushed there by the forward method because the commit method is called if and only if 

the reverse method E-() is not called.!!
Note also that variable t here is only a temp.  It is not a state variable in the simulation, and hence it does not have to be restored during rollback.
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int a,b;!
!
void E() {!
  if (a>b) {!
    int t = a;!
    b++;!
    a = b;!
    b = t;!
  }!
}

!
void E
  if (a>b) {!
    int t = a;!
    { S.push(b); b++; }!
    { S.push(a); a = b; }!
    b = t;!
    S.push(1);!
  }!
  else {!
    S.push(0);!
  }!
}

!
void E
  if ( S.top() ) {!
    S.pop();!
    { a = S.top(); S.pop(); }!
    { b = S.top(); S.pop(); }!
  }!
  else {!
    S.pop();!
  }!
}!

!
void E
  if ( S.top() ) {!
    S.pop();!
    S.pop();!
  }!
  S.pop();!
}

E()

E+()

E-()

E*()

Incremental 
state saving

With Incremental State Saving we instrument the forward routine E+() to save the value of a state variable the very first time it is overwritten or, if we cannot 
determine that statically, then we save the value every time it is overwritten that might possibly be the first time. In the forward method E+() we save its value only 
the first time if we can because of course in the reverse method we only need to restore it to its initial value.  In this example the variable b is overwritten twice, but 
we push its value onto the stack only the first time. Of course we also have to push a boolean indicating which branch of the conditional was taken.  The reverse 

method, E-(), only restores the variable to their original values and pops the stack. !!
The commit method E*() must also pop any values off the stack that were pushed there by the forward method because the commit method is called if and only if 

the reverse method E-() is not called.
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Path-oriented, 
regenerative

12

int a,b;!
!
void E() {!
  if (a>b) {!
    int t = a;!
    b++;!
    a = b;!
    b = t;!
  }!
}

!
void E
  if (a>b) {!
    int t = a;!
    b++;!
    a = b;!
    b = t;!
  }!
}

!
void E
  if ( b > (a-1) ) {!
    int t = b;!
    b = a;!
    a = t;!
    b = b - 1;!
  }!
}

!
void E

E()

E+()

E-()

E*()

In this case the path-oriented and regenerative style of reverse code generation manages to produce perfectly reversible code, with nothing pushed onto or popped 

from the stack.  Not that the forward E+() routine in this case is identical to E() and the commit routine E*() is a no-op.  We did not even have to introduce any 
additional variables.  Perfect reversibility is not usually achievable for a whole event method, but it often is for at least some regions of the code and/or some 
variables.  It is the ideal of reverse computation.
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int a,b;!
!
void E() {!
  if (a>b) {!
    int t = a;!
    b++;!
    a = b;!
    b = t;!
  }!
}

E() E+()

E-()

E*()

Up front 
state saving

Incremental  
state saving

Path-oriented  
regenerative

Comparison of 
all 3 examples

This slide just summarizes the last three examples.  The original code for E() is in a box on the left, and three different ways of factoring it into E+(), E-(), and 
E
*
() are recorded in the next three columns of the table.!!

The comparison shows that in this particular example, if the condition (a>b) is true, then there is more overhead with incremental state saving then there is with 
up front state saving, but if (a>b) is false then the reverse is true.  This is not a general statement, however.!!
Also in this case the path-oriented regenerative methods generate perfect reverse code that does not need to save any data on the stack at all.  In this case the code it 
produces is clearly superior to either of the other methods.
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Path-oriented, regenerative inversion

14

This is another example application of Backstroke’s path-oriented regenerative inversion algorithm. The variables a, b, and c are state variables. The forward code 
is instrumented in red to keep track of the dynamic path taken, and the reverse code uses path information to restore variable values. Note that the variable path 
that is introduced in the forward and reverse methods should be viewed as a bit mask that records for each conditional which branch on the conditional was taken.  
In the forward routine the low order bit of path records is 0 if the then-branch of the second conditional is taken, and is a 1 if it is not.  The second bit records the 
same thing for the first conditional. In the reverse method the corresponding conditionals are reversed in order, so the low order bit indicates which branch to take 
in the first conditional, and the second bit indicates which branch to take with the second conditional.!
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Reverse functions:

15

• We can handle function in some cases by inlining, but that is often 
not practical.!

• A function call splits the body of E into two regions: before f() and 
after f().!

• It requires us to be able to restore an intermediate state, right where 
the function was called, not just the initial state.!
• In this case that is the state just after the execution of P+ in E+()!
• This is a contrast between region-based and incremental inversion methods.!
• Up front state saving now must be interpreted as up front of the region, not 

just up front of the entire event method!
• Incremental state saving, however, makes this easy.

S is the global stack onto which all saved data is pushed that is required for rolling back forward execution.!!
For the tests in both the conditional and the while loop, we assume there are no side effects.  If there are, then the reverse code can to be easily adjusted.!!
Note that integer addition / subtraction and sequential composition require no data to be stored on the stack S.
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Saving and restoring class type objects

16

CT c;                  // 1!
!
S.push(c);             // 2!
c = S.top();           // 3!
S.pop();               // 4

• In saving and restoring class-type data, copies have 
to be made and destroyed.  C++ has a number of 
constructs for this, used in the code on the right:!
• Line 1 invokes the (default) constructor for type CT!
• Line 2 invokes the copy constructor for type CT!
• Line 3 invokes the operator = function for type CT!
• Line 4 invokes the destructor for type CT!

• Their implementations must all work together when 
used in saving and restoring class type variables.!
• They must use full deep copies and restores with no 

other side effects!
• If pointer types are involved then the copies have to be 

fully cycle- and aliasing-aware.!

• Backstroke or other automatic reverse code 
generator must either!
• trust that the implementations of these functions have 

these properties, or!
• accept a programmer declaration (via pragma) that 

they do, or!
• prove that that do, or!
• auto-generate appropriate versions of these four 

functions for every class type that has to be saved and 
restored.

The semantics of C++ constructors, copy constructors, destructors, and assignment operators all play a fundamental role in the way reverse computation is 
implemented when class-type values are involved. We cannot assume that the destructor is the reverse of the constructor, and we cannot assume that they all play 
well together and have the properties needed in the general case for reverse computation, namely that full, deep copies are made that are aliasing- and cycle-aware 
and that they have no other side effects except those required for perfect copies.  !!
In C++ it is also useful in some patterns to create uncopyable or unassignable types, and those simply should not be used as the values of state variables in a 
simulation.
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int A[100000],!
    B[100000];!
!
void E() {!
  int i = 0;!
  while ( test(A,B,i) ) {!
    A[i] = f(A,B,i);!
    i = g(A,B,i);!
  }!
}

E()

E+()

E-()

E*()

Up atomic saving of 
whole array

Elementwise state saving 
of array elementsHandling 

arrays

In this example the A and B arrays are state variables, but i is not. And the functions test, f, and g are side-effect free. !!
For the purposes of exposition on this slide we have assumed the existence of methods S.pushArray(A), topArray(A), and S.popArray() that do for array 
arguments the same things as S.push(n), S.top(), and S.pop() do for integer arguments.!!
This exemplifies the tradeoffs that come with handling arrays and other collections.  If the while-loop is executed only a few times, then it is much faster to do 
elementwise saving of the few elements of the array that are overwritten and restore them one at a time in case of rollback than to save and restore the entire 
100,000-element array.  But if the loop is executed many times, and many elements of the array are overwritten, then it is faster to simply save the entire array as an 
atomic data structure  and restore the same way on rollback.!!
But we may not be able to determine statically which of those is the case, which leaves the reverse code generator in a quandary.  Which kind of reverse code should 
it generate?  One approach is to allow the programmer to offer advice in the form of a pragma or specially formatted comment indicating which choice to use. 
Another approach is illustrated on the next slide.
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int A[100000],!
    B[100000];!
!
void E() {!
  int i = 0;!
  while ( test(A,B,i) ) {!
    A[i] = f(A,B,i);!
    i = g(A,B,i);!
  }!
}

E()

E+() E-()

Start with elementwise saving of array elements; abandon 
it in favor of atomic array saving if a threshold reachedHandling 

arrays

Corrections to this slide by Markus 
Schordan!

Multiple corrections on this slide thanks to Markus Schordan.!!
In this example the A and B arrays are state variables, but i is not. The functions th, test, f, and g are all side-effect free.  The function S.pushArray(A) is 
intended to push the entire array A onto the stack, even though this is not strictly correct C++; likewise S.topArray(A) is intended to copy the entire array value 
from the top of the stack into A.  S.popArray() just pops off the entire array.!!
Here we do something sophisticated.  We do not decide decide statically whether to use elementwise or atomic saving of array A. Instead, we make some measurements 
at runtime and decide then. Whether this method will prove practical or not (i.e. whether we can automatically generate code like this) is an open research question, 
but this example illustrates the depth and complexity of the options we have in generating good forward and reverse code.!!
In the forward method E+() we don’t know how many times the loop will be executed, and so we start out assuming that we will be doing incremental saving of 
array elements as they are modified, keeping count of the number of loop executions and also pushing array elements onto stack S as they are modified.  But after a 
certain threshold number of elements have been pushed onto the stack, it becomes probable the loop will cycle many times and that a large fraction of all of the 
array elements will be modified.  At that point we abandon elementwise saving and pop everything off of the stack that we pushed onto it. We then start over, 
pushing the entire array A onto the stack all at once.  If, at the end of the loop, we did not abandon elementwise saving of array A, then we push the loop count ct 

on the stack to prepare for elementwise restoration. Either way, the last thing we push on the stack is the boolean elementwise to tell the reverse method E-() 
which mechanism to use to restore A.!!
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Dynamic storage allocation: Correct version

19

Calling new T in the forward method is OK. But we must realize that this invokes a constructor for type T in C++, (which in turn invokes a whole hierarchy of other 
constructors for members in tyre and parent types, all called in canonical order).   The problem with treating delete() as its reverse is that delete() calls the 
destructor for the type of data being deleted, but the destructor is not generally the reverse of the constructor!  In general, programmer-defined constructors can have 
arbitrary side-effects on other variables, which may or may not be exactly reversed by the matching destructor. What we need is for each constructor to have a 

reverse constructor for T, which we denote here by T_constructor-().  We call that first, and the use the obscure C++ construct operator delete() to finally 
free the storage allocated by new.  In C++ operator delete() does not call a destructor.
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Dynamic storage deallocation

20

As with new, a similar problem arises in reversing delete() in that delete() invokes the destructor for the type of object being destroyed.  We need to invoke 
that destructor in the forward routine, because the side effects of the destructor on other variables can be felt in subsequent statements (R).  However, we need to 
run not the original destructor, tptr->T_destruct(), but its forward instrumented version, tptr->T_destruct+().  And we need to be able to reverse the 

effects of tptr->T_destruct+() in the E-() by calling tptr->T_destruct-().  But while we have to reverse the effects of the destructor in E-(), we 

cannot really free the storage associated with the object in the E-() routine, because if we do the storage could be re-allocated and overwritten, and the 

overwriting would make it impossible for us to reverse the action in E-().  So we delay the actual freeing of the storage until the commit routine, and then we do it 
using the  operator delete() construct.
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Output

21

• Both file and the value of expr must be pushed into the 
stack by value!

• If expr evaluates to an array, the entire array must be pushed 
onto the stack!

• If expr evaluates to a struct, or class type, fully deep copies 
are required using an appropriate, perhaps non-default copy 
constructor.

Note: expr is a side-effect free expression. When we push data onto the queue Q for processing at commit time, we must push values, not expressions to be 
evaluated.!
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A reasonable first strategy for generating 
reverse code

• Consider each variable or field v in the object’s state separately!
• If v is not modified by E(), do nothing to save or restore it!
• If v’s initial value can be regenerated from the final state produced by E(), 

generate code in E-() to do that using path-oriented, regenerative methods 
(yielding “perfect reversibility” for that variable).!

• If v is a scalar (including pointers code)!
• if modified many times in E(), do up front state saving and restoration!
• if modified only once in E(), do incremental state saving and restoration !
• if cannot be sure statically, try to determine the places where it is modified the first time, and put saving 

and restoration code at those places!
• otherwise do incremental state saving!

• If v is an array or collection!
• if most of the elements are modified in E(), do up front state saving and restoration of the entire collection!
• if only a few of the elements are changed, do incremental state saving on an element-by-element basis!
• if it cannot be statically determined which, consider programmer pragmas, or dynamic instrumentation to 

measure the number of elements affected!

• If v is a class variable!
• Establish proper constructor, copy constructor, destructor  and operator =  functions for the class!
• Generate reverses for those functions and generate appropriate code in E+(), E-(), and E*() using them

22
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End Reprise

23
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Asynchronous, distributed rollback?   Are 
you serious???
• Must be able to restore any previous state (between events)!

• Must be able to cancel the effects of all “incorrect” event messages that should 
not have been sent!
• even though they may be in flight!

• or may have been processed and caused other incorrect messages to be sent!

• to any depth!

• including cycles back to the originator of the first incorrect message!!

• Must do it all asynchronously, with many concurrently interacting rollbacks in 
progress, and without barriers!

• Must deal with the consequences of executing events starting in “incorrect” states!
• runtime errors!

• infinite loops!

• Must guarantee global progress (if sequential model progresses)!

• Must deal with truly irreversible operations!
• I/O, or freeing storage, or launching a missile!

• Must be able to operate in finite storage!

• Must achieve good parallelism, and scalability

24

At this point in the course we have demonstrated the Optimistic (rollback-based_ methods have all of the good properties shown in green.  But we have not yet 
demonstrated that good performance can be achieved at large scale.  We will be doing that in the next few dozen slides.
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Ancient data from Army benchmarks running on the 
Time Warp Operating System (TWOS) on the 
Caltech Mark III Hypercube 
!
Specs:  
 64 nodes 
 Motorola 68020 processors,12 - 30 MHz 
 6-D hypercube interconnect 
 4 MB RAM per node 
!
Date: ~1990

25
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Features of TWOS in 1990
• 128-bit virtual time; 20-char process name space!

• No use of shared memory (even on shared memory Butterfly machine)!

• No use of process blocking!

• Multi-message events!

• Lazy & aggressive cancellation!

• Full cancelback mechanism for storage mgt and flow control!

• One-pass GVT calculation!

• Dynamic process creation/destruction!

• Dynamic “phases”; phases separately schedulable & migratable; 
parallelism possible between phases of one process!

• Runtime process (phase) migration!

• Static & also fully dynamic load balancing!

• Highly optimized and perfectly compatible sequential simulator!

• Elaborate, automated instrumentation
26
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Speedup* curve on 32 nodes of Hypercube

27

* speedup relative to our fastest, TWOS-compatible, strictly sequential simulator

Combat simulation -- mini JCATS!
JPL Mark III Hypercube, 32 processors, Motorola 68020, 4 MB RAM per node!
July 1988!!
This is a strong scaling speedup curve, and the speedup is compared to an optimized sequential simulator, not against a one-node execution of Time Warp.!!
Linear speedup up to 32 nodes, almost 17x speedup
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Speedup on 114-node shared memory machine 
(without using shared memory)

28

* speedup relative to our fastest, TWOS-compatible, strictly sequential simulator

A few months later in October.  Same combat model (modified since July), same size, run for a little more time.!
BBN Butterfly (shared memory, NUMA), 108 processors!!
Linear speedup to about 80 nodes, then probably some flattening of performance.!!
Note performance variations in multiple runs of exact same configuration.
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Same runs as on the previous slide with number of rollbacks plotted as function of number of processors.!
Note that as more processors are used (strong scaling) the number of rollbacks trends upward!!
But the previous graph showed that we we still getting good scaling results in spite of that!!
This shows that it is not true that we should have as a tuning goal of TW the minimization of the number of rollbacks.!
Most these rollbacks (hundreds of thousands of them) occur off the critical path, so they do not slow down the progress of the simulation. 
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Again, same runs, this time with number of antimessages transmitted plotted as a function of number of nodes.!
Again, number of antimessages increases, even as speed increases (see two slides previous).!
Note that antimessages is approximately proportional to the number of rollbacks from the previous slide.
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“Instantaneous” speedup

31

Short term speedup calculated at many virtual times during the simulation.
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Early experiments with dynamic load 
balancing

• Migration mechanism:!
• Split an object P at time ! into two “phases” P[-∞ .. !) and P[! .. ∞]!

• Leave P[-∞ .. !) in place, and migrate P[! .. ∞] to new node!

• Every node had a full map of object/phase locations.  Phase map indicated locations of 
all phases of all objects. !

• Phase location map had to be updated globally every migration cycle .!

• Rollback could take place across more than one processor!

• On the other hand, parallelism in time was possible!!

• Load balancing policy!
• Migrations considered every 4 seconds of execution!

• At most one object (phase) migrated on or off a node each migration cycle.!

• Low GVT nodes considered overload; high GVT nodes considered underloaded.!

• Migrations from most loaded to least loaded node, 2nd most loaded to 2nd least load, etc.

32
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Early experiments with dynamic load management

“Balanced” means initial config statically load balanced based on perf stats from 
previous run with the same number of nodes; otherwise random initial config. 

“DLM” means dynamic load management in effect

Different model: “Pucks”, a bunch of frictionless hockey pucks colliding with the sides of the rink and with each other!!
Dynamic load management based on “effective utilization” concept!!
No DLM:                  Random initial arrangement of Objects on nodes; no dynamic load management!
DLM:                        Random initial arrangement of Objects on nodes, and with dynamic load management!
No DLM, balanced: Statically balanced initial arrangement of nodes, but no DLM!
DLM, balanced:       Statically balanced initial arrangement of nodes, with DLM in addition
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Forward 25 years !
and !

a factor of 1 million in scale: !
!

Experiments at extreme scale 
on Sequoia

34
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Sequoia Blue Gene/Q

35
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LLNL’s%Sequoia%Blue%Gene/Q

36

• Sequoia:%96%racks%of%IBM%Blue%
Gene/Q%
• 1,572,864%%A2%cores%@%1.6%GHz%
• 1.6%PiB%of%RAM%
• 16.32%Pflops%for%LINPACK/Top500%
• 20.1%Pflops%peak%
• 5BD%Torus:%16x16x16x12x2%
• Bisection%bandwidth ~49%TB/sec%
• Power% ~7.9%MWatts

• “Super%Sequoia”%@%120%racks%
• 24%racks%from%Vulcan%added%to%the%original%96%

racks%
• Increased%to%1,966,080%A2%cores%%
• 5BD%Torus:%20x16x16x12x2%
• Bisection%bandwidth%same%
• Other%performance%metrics%increased%

proportionally
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PHOLD Benchmark Model

37
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PHOLD Benchmark model

• Defined by Richard Fujimoto 

• De facto standard for comparing parallel discrete event 
simulators to one another!
• In use for  >20 years!

• Artificial model representing challenging simulation dynamics !
• Very fine-grained events!
• No communication locality !
• Symmetric and (statistically) load balanced, steady state equilibrium!
• Almost all simulator overhead!

• We did an exact strong scaling study: !
• Same number of LPs, same random seeds, same events, and same exact results at all 

scales!
• Only variable is the number of nodes (racks) of Sequoia used

38
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PHOLD 
Benchmark

39

LP2LP3

LP4 LP1

LP0

eventMethod E() {!
int t;!
double d := expRandom(1.0);!
if ( random() < 0.9 ) {!
  ScheduleEvent(self, now + lkhd + d);!
} else {!
  t := uniformRandom(0,N-1);!
  ScheduleEvent(t, now + lkhd + d);!
}!

}

N = number of LPs in the simulation!
self = the name of the LP executing!
uniformRandom(m,n) draws an integer in the inclusive range [m..n]!
expRandom(λ) draws a random real number exponentially distributed with mean λ!
random() draws a real number uniformly distributed in the range [0.0 .. 1.0)!
now is the current simulation time in the calling object!
lkhd is the lookahead value.  !

lkhd can be 0 for optimistic simulations, but is generally made nonzero so that comparisons can be made with conservative algorithms (which need nonzero 
lookahead).  It was 0.1 throughout this study.!
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ROSS Optimistic PDES 
Simulator

40

40 PDES Course Slides Lecture 13.key - May 5, 2014



Parallel Discrete Event Simulation  -- (c) David Jefferson, 2014

ROSS parallel discrete event 
simulator

• Rensselaer Optimistic Simulation System 

• Developed at RPI by Prof. Chris Carothers 

• Open source 

• Uses Time Warp optimistic synchronization 
• rollback + antimessages!

• Supports reverse computation 
• In this case the reverse methods were produced by hand, 

not using Backstroke 
• Used a perfectly reversible random number generator

41
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New “World Records” 
for  

Speed and Scale

42
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PHOLD configuration

•We chose 251,658,240 objects!

•Objects gathered into MPI tasks. Events executed 
sequentially within tasks.!

• 4 MPI ranks  per core!
• 64 ranks       per Sequoia node!
• 1920 LPs      per rank on     2 racks!
•     32 LPs      per rank on 120 racks

43
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Difficulties encountered at all 
software levels

• Subtle “bug” in PHOLD benchmark 
• Only apparent when looking at the results in the 9th decimal 

place!

• Scaling bugs in ROSS 
• Had to re-do internal memory management completely!

• Scaling bugs or limitations in MPI 
• Did not work at full scale with 4 LPs per core!
• Memory/buffer management issue in MPI_Init()

44
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Strong scaling results for  
Sequoia – ROSS – Time Warp – PHOLD 

45

▪ Peak 
speed:        
504 GEv/s  

▪ We had 
space for 
100x more 
LPs 
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Committed Events per Core-Sec as a 
Function of Scale

46
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Diminishing returns as more cores 
added

47
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Events committed vs. rolled back

48

The difference between the two curves is the number of events rolled back.!
Events committed is exactly constant because this is a strong scaling study, and so we are committing exactly the same events at all scales.
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Fraction of all events rolled back

49

Of all of the events executed (committed + rolled back) this is the fraction rolled back, i.e. rolledback/(rolledback+committed).
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Historical “world records” for PHOLD speed

50

“Jagged”(phenomena(
due(to(different(
implementa4ons(and(
configs(of(PHOLD,(
plus(publishing(
variances.(
!
2005:(first(4me(a(
large(supercomputer(
reports(PHOLD(
performance(
!
2007:(Blue(Gene/L(
PHOLD(performance(
!
2009:(Blue(Gene/P(
PHOLD(performance(
!
2011:(CrayXT5(PHOLD(
performance(
!
2013:(Blue(Gene/Q

This logarithmic plot is the historical record of PHOLD benchmark speeds published.  Each point plots the highest speed published on this benchmark in the year, 
regardless of platform.  In most cases the authors just configured the fastest PHOLD instance they could on the biggest machine they had access to and reported the 
(among much other detail) the resulting speed in events per second.!!
The “jagged” look of the graph has a mixture of causes: The implementations, parameters, and configurations of PHOLD were not identical from year to year.  And 
some years no one beat the previous records, but since they (quite appropriately) published their results anyway, we plotted them.
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Historical “world records” for PHOLD speed

51

▪ 41 times the 
speed of the 
previous record 

▪ 5 million-fold 
increase in 
speed in 18 
years 

▪ 2.36x increase 
in speed per 
year 

▪ 10x increase 
every 2.69 years

This logarithmic plot is the historical record of PHOLD benchmark speeds published.  Each point plots the highest speed published on this benchmark in the year, 
regardless of platform.  In most cases the authors just configured the fastest PHOLD instance they could on the biggest machine they had access to and reported the 
(among much other detail) the resulting speed in events per second.!!
The “jagged” look of the graph has a mixture of causes: The implementations, parameters, and configurations of PHOLD were not identical from year to year.  And 
some years no one beat the previous records, but since they (quite appropriately) published their results anyway, we plotted them.

51 PDES Course Slides Lecture 13.key - May 5, 2014



Parallel Discrete Event Simulation  -- (c) David Jefferson, 2014

SEQUOIA / ROSS / Time Warp / PHOLD  
Performance Data

52

Part of the original data collect for our Sequoia / ROSS/ Time Warp / PHOLD study.

52 PDES Course Slides Lecture 13.key - May 5, 2014



Parallel Discrete Event Simulation  -- (c) David Jefferson, 2014

Asynchronous, distributed 
rollback?   Are you serious???
• Must be able to restore any previous state (between events)!

• Must be able to cancel the effects of all “incorrect” messages that should not have 
been sent!
• even though they may be in flight!

• or may have been processed and caused other incorrect messages to be sent!

• to any depth!!

• Must do it all asynchronously, with many interacting rollbacks occurring 
concurrently!

• Must deal with the consequences of executing events in “incorrect states”!
• runtime errors!

• infinite loops!

• Must deal with truly irreversible operations!
• I/O, or launching a missile!

• Must guarantee global progress!

• Must be able to operate in finite storage!

• Must achieve good parallelism, and scalability
53

This shows the list of challenges we have to overcome for the Time Warp algorithm, or any optimistic PDES algorithm, to be practical.  !!
I have now completed the list.
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Concluding Thoughts
• This record will stand until at least the next generation of 

supercomputers 
• Parallel DES needs cores, not GPUs!
• No existing machine today can challenge Sequoia in that regard !

• except Tianhe-2 in Guangzhou, which has 3.12 million Xeon cores!
• We had enough RAM at full scale for 100x the number of LPs we 

actually used  
• i.e. 25 billion LPs (or “objects”, “entities”, “agents”, etc.)!

• We propose a logarithmic measure of speed on this benchmark 
• Warp = log10(Speed) – 9!
• By this measure we achieved Warp 2.70!

• This result opens the door to “planetary scale” simulations 
• “only” 7 billion people on Earth!
• “only” 4 billion IPv4 addresses!
• “only” 50 billion cells mouse!
• “only” 1 trillion atoms in a cubic micron of solid metal

54

We are now more limited by our ability to build and validate 
discrete models than by our ability to execute them!
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Thank(You!
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A word from our sponsors.
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Next Two Weeks!
• Two “finale” lectures!

• I will make an audacious but speculative argument!
• Optimistic parallel discrete event simulation can be viewed as a new parallel 

programming paradigm for many scalable applications, not just simulation.!
• Put another way: From this point of view all sufficiently large cooperative 

parallel computations can fruitfully be viewed as simulations!

• Will touch on many exascale (and beyond) issues!
• synchronization!
• debugging!
• fault recovery!
• load balancing!
• power management!
• space-time symmetry!
• parallel programming methodology!

• Looking for your feedback and ideas!

56
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End

57
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